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Abstract. Global coupled chemistry–climate models un-
derestimate carbon monoxide (CO) in the Northern Hemi-
sphere, exhibiting a pervasive negative bias against measure-
ments peaking in late winter and early spring. While this
bias has been commonly attributed to underestimation of di-
rect anthropogenic and biomass burning emissions, chem-
ical production and loss via OH reaction from emissions
of anthropogenic and biogenic volatile organic compounds
(VOCs) play an important role. Here we investigate the rea-

sons for this underestimation using aircraft measurements
taken in May and June 2016 from the Korea–United States
Air Quality (KORUS-AQ) experiment in South Korea and
the Air Chemistry Research in Asia (ARIAs) in the North
China Plain (NCP). For reference, multispectral CO re-
trievals (V8J) from the Measurements of Pollution in the Tro-
posphere (MOPITT) are jointly assimilated with meteorolog-
ical observations using an ensemble adjustment Kalman filter
(EAKF) within the global Community Atmosphere Model
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with Chemistry (CAM-Chem) and the Data Assimilation Re-
search Testbed (DART). With regard to KORUS-AQ data,
CO is underestimated by 42 % in the control run and by 12 %
with the MOPITT assimilation run. The inversion suggests
an underestimation of anthropogenic CO sources in many re-
gions, by up to 80 % for northern China, with large incre-
ments over the Liaoning Province and the North China Plain
(NCP). Yet, an often-overlooked aspect of these inversions
is that correcting the underestimation in anthropogenic CO
emissions also improves the comparison with observational
O3 datasets and observationally constrained box model sim-
ulations of OH and HO2. Running a CAM-Chem simulation
with the updated emissions of anthropogenic CO reduces
the bias by 29 % for CO, 18 % for ozone, 11 % for HO2,
and 27 % for OH. Longer-lived anthropogenic VOCs whose
model errors are correlated with CO are also improved, while
short-lived VOCs, including formaldehyde, are difficult to
constrain solely by assimilating satellite retrievals of CO.
During an anticyclonic episode, better simulation of O3, with
an average underestimation of 5.5 ppbv, and a reduction in
the bias of surface formaldehyde and oxygenated VOCs can
be achieved by separately increasing by a factor of 2 the mod-
eled biogenic emissions for the plant functional types found
in Korea. Results also suggest that controlling VOC and CO
emissions, in addition to widespread NOx controls, can im-
prove ozone pollution over East Asia.

1 Introduction

Carbon monoxide (CO) is a good tracer of biomass burning
(Crutzen et al., 1979; Edwards et al., 2004, 2006) and an-
thropogenic emission sources (e.g., Borsdorff et al., 2019).
It is also the main sink of the hydroxyl radical (OH) and is
therefore important in quantifying the methane (CH4) sink
in the troposphere (Myhre et al., 2013; Gaubert et al., 2016,
2017; Nguyen et al., 2020). In fact, because of the lack of
observational constraints on the OH spatiotemporal variabil-
ity, uncertainties in the atmospheric CH4 lifetime and its in-
terannual variability have precluded accurately closing the
global CH4 budget (Saunois et al., 2016; Prather and Holmes,
2017; Turner et al., 2019). There is a need to reduce uncer-
tainties in the main drivers of OH (National Academies of
Sciences, Engineering, and Medicine, 2016), which are CO,
ozone (O3), water vapor (H2O), nitrogen oxides (NOx), and
non-methane volatile organic compounds (NMVOCs).

The evolution of CO in Eulerian chemical transport is gov-
erned for each grid cell by Eq. (1):

δCO
δt
=− ν · ∇ [CO]+

∑Sectors
i=1

Ei +
∑Chemicals

i=1
χi

− k [CO][OH]− kdeposition [CO] . (1)

CO has only one chemical sink: its reaction with OH
(k [CO][OH]). The other CO sink is dry deposition

(kdeposition [CO]) through soil uptake (Conrad, 1996; Yone-
mura et al., 2000; Stein et al., 2014; Liu et al., 2018). The di-
rect sources are emissions from different sectors Ei , as well
as the anthropogenic (fossil fuel and biofuel), biomass burn-
ing, biogenic, and oceanic sources. Locally, CO can be ad-
vected from neighboring grid cells (−ν · ∇ [CO]) and pro-
duced from the oxidation of NMVOCs (χi). Globally, the
oxidation of CH4 is the main source of chemically produced
CO. Biogenic and anthropogenic NMVOCs also significantly
contribute to secondary CO.

The use of inverse models and chemical data assimilation
systems has helped in constraining the global CO budget and
associated trends at global to continental scales, particularly
with the availability of long time series of CO retrievals from
the Measurement of Pollution In the Troposphere (MOPITT;
Worden et al., 2013) satellite instrument (e.g., Arellano et
al., 2004; Pétron et al., 2004; Heald et al., 2004; Kopacz
et al., 2010; Fortems-Cheiney et al., 2011; Yumimoto et al.,
2014). Such studies are generally in agreement with regards
to the decreasing long-term trends in CO emissions from an-
thropogenic and biomass burning sources (Jiang et al., 2015;
Yin et al., 2015; Miyazaki et al., 2017; Zheng et al., 2019),
although regional emissions remain largely uncertain. Out-
standing issues reported in the literature that still need to
be resolved include errors in model transport (Arellano and
Hess, 2006; Jiang et al., 2013), lack of accurate representa-
tion of the atmospheric vertical structure of CO (Jiang et al.,
2015), OH fields (Jiang et al., 2011; Müller et al., 2018), ag-
gregation errors (Stavrakou and Müller, 2006; Kopacz et al.,
2009), and inclusion of chemical feedbacks (Gaubert et al.,
2016). Recent studies have suggested mitigating these issues
by assimilating multiple datasets of chemical observations
(Pison et al., 2009; Fortems-Cheiney et al., 2012; Kopacz et
al., 2010; Miyazaki et al., 2012, 2015) and the use of different
models that use the same data assimilation system (Miyazaki
et al., 2020a).

Regionally, comparison with in situ observations of for-
ward and inverse modeling approaches suggests that several
standard inventories of CO emissions in China are too low
(e.g., Kong et al., 2020; Feng et al., 2020). Recently, Kong
et al. (2020) compared a suite of 13 regional model simula-
tions with surface observations over the North China Plain
(NCP) and Pearl River Delta (PRD) and found a severe un-
derestimation of CO, despite the models using the most up-
to-date emissions inventory, the mosaic Asian anthropogenic
emission inventory (MIX) (M. Li et al., 2017). Using sur-
face CO observations in China, Feng et al. (2020) performed
an inversion of the MIX inventory and found posterior emis-
sions that were much higher than the priors, with regional
differences, still pointing to a large underestimation in north-
ern China. The large posterior increase in CO emissions in
northern China seems to be due to a severe underestimation
of residential coal combustion for heating and potentially for
cooking (Chen et al., 2017; M. Cheng et al., 2017; Zhi et al.,
2017).

Atmos. Chem. Phys., 20, 14617–14647, 2020 https://doi.org/10.5194/acp-20-14617-2020



B. Gaubert et al.: Correcting model biases of CO in East Asia 14619

While the general underestimation of fossil fuel burning in
East Asia seems to explain the underestimation of Northern
Hemisphere (NH) extratropical CO found in global models
(Shindell et al., 2006), there are other confounding factors.
Naik et al. (2013) found large inter-model variability in the
regional distribution of OH and an overestimation of OH in
the NH. This is consistent with an overestimation of ozone
(Young et al., 2013), which provides another explanation for
the CO underestimation. Strode et al. (2015) confirmed that
the springtime low bias in CO is likely due to a bias in OH.
This can be caused by a bias in ozone and water vapor, which
are OH precursors. Yan et al. (2014) suggested that these bi-
ases could be mitigated by increasing the horizontal resolu-
tion within a two-way nested model. Stein et al. (2014) sug-
gested that anthropogenic CO and NMVOCs from road traf-
fic emissions were too low in their inventory, but also sug-
gested that a wintertime increase in CO could be due to a
reduced deposition flux. Secondary CO originating from the
oxidation of CH4 and NMVOCs could also play a role in the
CO underestimation (e.g., Gaubert et al., 2016).

Due to significant efforts to reduce emissions in China, in-
cluding effective implementation of clean air policies which
started in 2010 (e.g., Zheng et al., 2018a, b), there has been
a reduction of CO emissions of around 27 % since 2010.
Bhardwaj et al. (2019) found a decrease in surface MOPITT
CO by around 10 % over the NCP and South Korea during
the 2007–2016 period. As opposed to NOx emissions that
have been decreasing since 2010, inventories suggest a net
NMVOC emissions increase (Zheng et al., 2018b). While
there are regional differences and no trends were observed in
satellite retrievals of CH2O for the period 2004 to 2014 over
Beijing and in the PRD (De Smedt et al., 2015), a more recent
study suggests an overall increase in VOC emissions in the
NCP by ∼ 25 % between 2010 and 2016 (Souri et al., 2020).
Shen et al. (2019) show that CH2O columns have a positive
trend in urban regions in China from 2005 to 2016. M. Li
et al. (2019) found an increase in NMVOC emissions from
the industry sector and solvent use, while emissions from the
residential and transportation sectors declined, leading to a
net increase in emissions of NMVOCs. A modeling study
suggests that the reduction of aerosols over northern China
has reduced the sink of hydroperoxyl radicals (HO2), which
resulted in an increase in surface O3 concentrations in north-
eastern China (K. Li et al., 2019). The transport of ozone pol-
lution between source regions makes it difficult to correlate
trends in ozone with the trends in emissions of its precursors
(Wang et al., 2017).

Emissions from East Asia are known to impact regional air
quality (AQ) and significantly contribute to surface O3 pollu-
tion at regional, continental, and even intercontinental scales
through trans-Pacific transport, in particular in spring when
meteorological conditions favor rapid transport (Akimoto et
al., 1996; Jacob et al., 1999; Wilkening et al., 2000; Heald
et al., 2006). Frontal lifting in warm conveyor belts (WCBs)
efficiently contributes to the transport of pollution (Cooper

et al., 2004; Zhang et al., 2008; Lin et al., 2012), which can
be observed by satellite retrievals of tropospheric O3 (Foret
et al., 2014) and aircraft in situ measurements (Ding et al.,
2015). However, the mechanisms that cause the uplifted pol-
lution to effectively descend to the downwind surface layers
at regional, continental, and intercontinental scales are com-
plex. In the case of South Korea, one efficient mechanism
could be that once lifted from the emission sources in China,
the higher-altitude plumes can pass through the marine atmo-
sphere of the Yellow Sea without removal processes, such as
dry deposition, and reach the surface of the Korean Peninsula
during the day, when the boundary layer is high (Lee et al.,
2019a, b). In addition, severe pollution episodes can be due
to local emissions under stagnant conditions with reduced re-
gional ventilation and lower wind speed (Kim et al., 2017).

The recent literature and findings from the 2016 field cam-
paign over South Korea indicate the relative importance of
O3 precursors and associated transport in this region. The
Korea–United States Air Quality (KORUS-AQ) field cam-
paign was a joint effort between the National Aeronautics
and Space Administration (NASA) of the United States and
the National Institute of Environmental Research (NIER) of
South Korea. The field campaign’s objective was to quantify
the drivers of AQ over the Korean Peninsula with a focus
on the Seoul Metropolitan Area (SMA), currently one of the
largest cities in the world. The intensive measurement period
was from 1 May and 15 June 2016 with the deployment of
a research vessel (Thompson et al., 2019) and four differ-
ent aircraft: the NASA DC-8, the NASA B200, the Hanseo
University King Air, and the Korean Meteorological Agency
(KMA) King Air. The aircraft sampled numerous vertical
profiles of trace gases, aerosols, and atmospheric physical
parameters with a missed approach flying procedure over the
SMA (e.g., Nault et al., 2018) and spiral patterns over the
Taehwa Research Forest (TRF), downwind from the SMA
(e.g., Sullivan et al., 2019). Peterson et al. (2019) studied the
weather patterns during KORUS-AQ and distinguished four
distinct periods defined by different synoptic patterns: a dy-
namic meteorological phase with complex aerosol vertical
profiles, a stagnation phase with weaker winds, a phase of
efficient long-range transport, and a blocking pattern.

This campaign provides several case studies of foreign-
influenced and local pollution episodes. Miyazaki et
al. (2019a) assimilated a suite of satellite remote sensing
of chemical observations and found that under dynamic
conditions, when there was efficient transport with uplift-
ing of pollution to higher altitudes (where the satellite has
more sensitivity), forecasted ozone was improved by the
assimilation of satellite ozone retrievals. In contrast, under
stagnant conditions, forecasted ozone was not improved as
much when compared to the DC-8 ozone measurements,
suggesting ozone formation closer to the surface. Lamb et
al. (2018) studied the vertical distribution of black carbon
during KORUS-AQ. Aside from a short episode of biomass
burning sources from Siberia, they found that the Korean
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emissions were important in the boundary layer, with a large
contribution from long-range transport from mainland China
that varies with the large-scale weather patterns. There are
different ways to quantify the sources contributing to pollu-
tants, such as Lagrangian back trajectory, VOC signatures,
CO-to-CO2 ratios, and CO “tags” (Tang et al., 2019). Over-
all, direct Korean CO emissions are important contributors
to the boundary layer CO, but not higher up where emissions
from continental Asia dominate. Simpson et al. (2020) per-
formed a source apportionment of the VOCs over the SMA
and also found a significant source of CO from long-range
transport with only a smaller CO source from combustion
over Seoul. Since long-range transport is important, the fore-
casted CO and water vapor during KORUS-AQ can be im-
proved by assimilating soil moisture from the NASA SMAP
satellite (Soil Moisture Active Passive) over China (Huang et
al., 2018). They stress the importance of error sources stem-
ming from chemical initial and boundary conditions as well
as emissions for modeling CO during two studied pollution
events.

While chemical data assimilation is effective for CO in
a global model, because of its longer lifetime than most of
the reactive species, there are some limitations if the parame-
ters, such as emission inventory inputs or physical and chem-
ical processes, are not updated consistently with the initial
conditions (Tang et al., 2013). The KORUS-AQ campaign
provides a large array of measurements and is an excellent
case study for testing the model with challenges that need
to be addressed for further improvements of CO and related
species of interest such as OH, O3, CH4, and NMVOCs. Here
we take advantage of the concurrent measurements during
the campaign to investigate the reasons for the CO underes-
timation, and we attempt to answer the following question:
can we explain why CO is consistently underestimated over
East Asia using a chemical transport model, field campaigns,
and satellite data assimilation?

We outline the set of observations used to verify and eval-
uate our chemical data assimilation system in Sect. 2. The
modeling system is presented in Sect. 3, the data assimilation
system in Sect. 4, and the evaluation of the data assimilation
results in Sect. 5. The comparison of emissions estimates and
additional sensitivity experiments is in Sect. 6.

2 Field campaign observations

2.1 The Korea–United States Air Quality
(KORUS-AQ) field campaign

The KORUS-AQ campaign provides a unique test bed for
comparing surface and aircraft in situ observations with
ground-based and satellite-based remote sensing (Herman
et al., 2018), particularly important for targeted short-lived
species such as formaldehyde (CH2O) and nitrogen dioxide
(NO2). Miyazaki et al. (2019a) showed that the background

Figure 1. Location of all the KORUS-AQ DC-8 1 min merge mea-
surements (red dots) and of the ARIAs Y-12 1 min merge measure-
ments (green dots). The location of some major cities is also indi-
cated (blue dots).

O3 measured by the DC-8 during KORUS-AQ ranges from
72 to 85 ppbv between the surface and 800 hPa over the Ko-
rean Peninsula. On top of these large background values,
high emissions from the SMA are responsible for the strong
formation of secondary organic aerosols (H. Kim et al., 2018;
Nault et al., 2018) and O3, which can be further enhanced
by biogenic emissions eastward of Seoul (Sullivan et al.,
2019). High ozone production is a result of emissions from
areas characterized to be VOC-limited, such as the urbanized
SMA and industrialized regions into a NOx-limited environ-
ment over rural and forested regions. Both Oak et al. (2019)
and Schroeder et al. (2020) examined O3 production during
KORUS-AQ with a focus on the SMA and surrounding re-
gions and reported a higher ozone production efficiency over
the rural areas. They pointed out higher ozone sensitivity to
aromatics, followed by isoprene and alkenes. Observations
over the Taehwa Research Forest east of Seoul show strong
ozone production (Kim et al., 2013) because of high emis-
sions of reactive biogenic VOCs, in particular isoprene and
monoterpenes.

We evaluate the model output against the DC-8 aircraft
measurements, shown in red in Fig. 1, which simultane-
ously provide many physical and chemical parameters of the
tropospheric chemistry environment system (Appendix A).
We use the 1 min merge file of DC-8 in situ observations.
Model outputs were linearly interpolated to the exact loca-
tion of the DC-8 in latitude, longitude, pressure altitude, and
time from the 6-hourly model outputs. During the whole
campaign, Simpson et al. (2020) showed that high ben-
zene concentrations (> 1 ppbv) were only found close to
the Daesan petrochemical complex. Since those large gradi-
ents of local plumes simply cannot be modeled in a global
model, we systematically rejected observations when the
benzene proton-transfer-reaction time-of-flight mass spec-
trometer (PTR-ToF-MS) measurements were higher than
1 ppb.
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In order to evaluate the CO sink and the impact of the as-
similation of MOPITT CO retrievals on the HOx levels, we
used the OH and HO2 calculated with the NASA Langley
Research Center (LaRC) 0-D time-dependent photochemical
box model (Schroeder et al., 2020). This box model is con-
strained by measured temperature and pressure, photolysis
rates derived from actinic flux observations, and observations
of O3, NO, CO, CH4, CH2O, PAN, H2O2, water vapor, and
non-methane hydrocarbons. The production and loss terms
of ozone are calculated for every single 1 Hz DC-8 set of ob-
servations. This is the only case when we use the 1 s merge
file instead of the 1 min merge dataset file. CAM-Chem out-
puts are interpolated accordingly. While there are some limi-
tations for the species with longer lifetimes, subject to phys-
ical processes that are not represented, the box model has
been specifically designed to estimate radical concentrations.
The details and sensitivity of the calculation are described in
Schroeder et al. (2020).

2.2 The ARIAs campaign

The Air Chemistry Research in Asia (ARIAs) field cam-
paign was conducted in May and June 2016 with the goal
of better quantifying and characterizing air quality over the
NCP (Benish et al., 2020; Wang et al. 2018). The instru-
mented Y-12 airplane was operated by the Weather Modifi-
cation Office of the Hebei Province to measure meteorolog-
ical parameters, aerosols optical properties, and trace gases.
The airplane was based at Luancheng Airport, southeast of
Shijiazhuang, the capital of Hebei Province, and flew verti-
cal spirals from ∼ 300 to ∼ 3500 m over the cities of Julu,
Quzhou, and Xingtai (Fig. 1). There were 11 research fights
between 8 May and 11 June 2016. Wang et al. (2018) identi-
fied three different planetary boundary layer (PBL) structures
with distinct aerosol vertical structure. The aerosol pollution
was mostly located below an altitude of 2 km, but some-
times with a vertically inhomogeneous structure, with higher
aerosols at higher altitudes than at the surface but still in
the boundary layer. These vertical structures were mostly ob-
served when the pollution originated from the southwest and
from the eastern coastal region of the study domain, while
cleaner air masses originated from the northwest. CO was
measured by cavity ring-down spectroscopy with the Picarro
model G2401-m instrument with a 5 s precision of 4 ppbv
and an estimated accuracy of ±1 %, and O3 was measured
by UV absorption using a thermal electron model 49C ozone
analyzer. O3 values ranged from 52 to 142 ppbv, partly be-
cause flight days were chosen to target meteorological con-
ditions favorable to smog events (Benish et al., 2020). CO
concentrations ranged from 91 ppbv to about 2 ppmv (Ben-
ish et al., 2020). The pervasive high levels of CO correlated
with SO2 indicate of extensive low-tech coal combustion. We
rejected individual CO observations (about 5 % of total CO
observations) when SO2 was greater than 20 ppbv (the 95th

percentile of all observations) to remove the extremely pol-
luted plumes.

3 Model configuration and improvements

3.1 Community Atmosphere Model with Chemistry
(CAM-Chem)

We use the open-source Community Earth System Model
version 2.1 (CESM2.1); an overview of the modeling system
and its evaluation is presented in Danabasoglu et al. (2020).
It contains many new scientific features and capabilities, in-
cluding an updated coupler, the Common Infrastructure for
Modeling the Earth (CIME), which allows for running an
ensemble of CESM runs in parallel with a single executable.
The atmosphere is modeled using the finite-volume dynam-
ical core of the Community Atmosphere Model version 6
(CAM6) with 32 vertical levels, a model top at 3.6 hPa, and
a 1.25◦ (in longitude) by 0.95◦ (in latitude) horizontal reso-
lution (Gettelman et al., 2019). The model now uses a uni-
fied parameterization of the planetary boundary layer (PBL)
and shallow convection, the Cloud Layers Unified by Binor-
mals (CLUBB; Bogenschutz et al., 2013). Other updates of
the model physical parameterizations are described in Get-
telman et al. (2019). The new Troposphere and Stratosphere
(TS1) reduced gas-phase chemical mechanism contains 221
species and 528 reactions (Emmons et al., 2020) and thus ex-
plicitly represents stratospheric and tropospheric ozone and
OH chemistry. This chemical scheme contains many updates,
including of the isoprene oxidation mechanism, splitting a
single aromatic into benzene, toluene, and xylene lumped
species as well as a terpene speciation. The overall setup
of CESM2.1 has been updated following the protocol of the
Coupled Model Intercomparison Project Phase 6, which in-
cludes solar forcings (Matthes et al., 2017), surface green-
house gas boundary conditions (Meinshausen et al., 2017),
and anthropogenic emissions. Therefore, we use the anthro-
pogenic emission inventory of chemically reactive gases that
has been generated by the Community Emissions Data Sys-
tem (CEDS; Hoesly et al., 2018). We use the latest year avail-
able (2014) for the KORUS-AQ period (2016). It is com-
monly acknowledged that errors in the emission inventory for
China are much larger than the trends between different years
(Feng et al., 2020). Anthropogenic emissions over East Asia
are replaced by the KORUS inventories version 5 or KO-
RUS v5 based on the Comprehensive Regional Emissions for
Atmospheric Transport Experiment (CREATE) (Woo et al.,
2012). Daily biomass burning emissions are obtained from
the Fire INventory from NCAR (FINN v1.5) version 1.5
(Wiedinmyer et al., 2011). Biogenic emissions are modeled
within the Community Land Model using the algorithms of
the Model of Emissions of Gases and Aerosols from Nature
(MEGAN v2.1) (Guenther et al., 2012). A summary of the
model references is presented in Table 1. We have made some
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Table 1. Summary of the main model components and references for CESM2.1 and CAM6-Chem.

Model component Reference

Community Earth System Model version 2.1 (CESM2.1) Danabasoglu et al. (2020)
Community Atmosphere Model version 6 (CAM6) Gettelman et al. (2019)
Tropospheric and Stratospheric chemistry scheme (TS1) Emmons et al. (2020)
Organic aerosol scheme (with volatility basis set) Tilmes et al. (2019)
Modal Aerosol Module (MAM4) Liu et al. (2016)
Community Land Model (version 5) Lawrence et al. (2019)
Model of Emissions of Gases and Aerosols from Nature (version 2.1) Guenther et al. (2012)

Inputs

Community Emissions Data System (CEDS) Hoesly et al. (2018)
Comprehensive Regional Emissions for Atmospheric Transport Woo et al. (2012)
Experiment (CREATE) version 5 or KORUS v5
Fire INventory from NCAR (FINN v1.5) version 1.5 Wiedinmyer et al. (2011)
Greenhouse gases prescribed fields Meinshausen et al. (2017)
Methane net surface fluxes Saunois et al. (2020)

additional changes for this study, presented in Appendix B.
In particular, we updated the heterogeneous uptake of HO2
and its coefficient.

3.2 Sensitivity test on the biogenic emissions

The KORUS-AQ campaign was subject to photochemical
episodes with large concentrations of secondary aerosols and
ozone (e.g., H. Kim et al., 2018). There is a significant quan-
tity of biogenic emissions from South Korean forests in-
cluding deciduous oak trees (Lim et al., 2011) and conifers
such as Korean pine (Pinus koraiensis), both of which sur-
round the Taehwa Research Forest. As a result, there are
high emissions from a variety of compounds, such as iso-
prene, monoterpenes, and sesquiterpenes, which contribute
to enhanced ozone in favorable conditions (S. Y. Kim et al.,
2013; S. Kim et al., 2015, 2016; H.-K. Kim et al., 2018).
Oak et al. (2020) showed that the largest ozone production
efficiency was in the rural areas of South Korea, where bio-
genic emissions are dominant. Kim et al. (2014) studied how
the plant functional type (PFT) distributions affect the re-
sults of biogenic emissions: broadleaf trees, needleleaf trees,
shrubs, and herbaceous plants are significant contributors to
BVOCs in South Korea. They found large sensitivities of cal-
culated biogenic emissions to three different PFT datasets
over Seoul, which resulted in local but significant changes
in simulated O3. We performed a sensitivity analysis to the
biogenic emissions by increasing the emission factors for
three of the Community Land Model PFTs that are present
in Korea: needleleaf evergreen temperate trees, broadleaf ev-
ergreen temperate trees, and broadleaf deciduous temperate
trees. We perform a set of simulations by varying biogenic
emissions to determine the best fit to the observations of
formaldehyde (CH2O) at the surface (see the Supplement).

For the sake of clarity, we will present one experiment de-
noted as CAM_MOP-Bio (see Sect. 4.6).

4 Chemical data assimilation system

4.1 Data Assimilation Research Testbed (DART)
implementation

The Data Assimilation Research Testbed (DART) is an open-
source community facility for ensemble data assimilation
developed and maintained at the National Center for At-
mospheric Research (Anderson et al., 2009a). DART has
been used in numerous studies for data assimilation (DA)
within CESM (Hurrell et al., 2013; Danabasoglu et al., 2020).
Global DA analyses have been carried out with assimila-
tion of conventional meteorological datasets within the Com-
munity Atmosphere Model (CA; Raeder et al., 2012), the
Community Land Model version 4.5 or CLM4.5 (Fox et
al., 2018), in a weakly coupled atmospheric assimilation
in CAM, and oceanic assimilation in the Parallel Ocean
Program ocean model (Karspeck et al., 2018). The chem-
ical data assimilation system inherits from previous work
that coupled the ensemble adjustment Kalman filter (EAKF)
analysis algorithm (Anderson, 2001) with CAM-Chem. The
DART/CAM-Chem is designed for efficient ensemble data
assimilation of chemical and meteorological observations at
the global scale (Arellano et al., 2007; Barré et al., 2015;
Gaubert et al., 2016, 2017).

4.2 DART/CAM-Chem analysis and forecast algorithm

The analysis is carried out using a deterministic ensemble
square root filter, the ensemble adjustment Kalman filter
(EAKF) (Anderson, 2001, 2003). The ensemble of 30 CAM-
Chem members is run with a single executable of CESM
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using the multi-instance capability. At the analysis step, the
following model variables are updated when weather obser-
vations are assimilated: surface pressure, temperature, wind
components, specific humidity, cloud liquid water, and cloud
ice. Assimilated observations include radiosondes as well the
Aircraft Communication, Addressing, and Reporting System
(ACARS), but also remotely sensed data including satellite
drift winds and Global Positioning System (GPS) radio oc-
cultation. We use a similar setup as previous studies (Barré et
al., 2015; Gaubert et al., 2016, 2017) with a spatial localiza-
tion of 0.1 radians or∼ 600 km in the horizontal and 200 hPa
in the vertical for both chemical and meteorological obser-
vations. We now use the spatially and temporally varying
adaptive-inflation-enhanced algorithm (El Gharamti, 2018)
that generalizes the scheme of Anderson (2009b). Multi-
plicative covariance inflation is applied to the forecast en-
semble before each analysis step.

4.3 MOPITT assimilation

As in previous implementations, both CO retrievals from
MOPITT and meteorological observations are simultane-
ously assimilated within the DART framework. We assimi-
late profiles of retrieved CO from the MOPITT nadir sound-
ing instrument onboard the NASA Terra satellite. The MO-
PITT V8J product (Deeter et al., 2019) is a multispectral
retrieval using CO absorption in the thermal infrared (TIR,
4.7 µm) and near-infrared (NIR, 2.3 µm) bands (Worden et
al., 2010). The objective is to maximize the retrieval sensi-
tivity to the lower layers of the atmosphere while minimiz-
ing the bias. We apply the same filtering thresholds that are
used to create the L3 TIR-NIR product, which exclude all ob-
servations from Pixel 3 in addition to observations wherein
(1) the 5A signal-to-noise ratio (SNR) is lower than 1000
and (2) the 6A SNR is lower than 400. We apply the strictest
retrieval anomaly flags (all from 1 to 5). We only assimilate
daytime measurements for which latitudes are lower than 80◦

and when the total column degrees of freedom are higher
than 0.5. Super-observations are produced by applying an
error-weighted average of the profiles (Barré et al., 2015) on
the CAM-Chem grid, with no error correlation since we con-
sider those to be minimized by the strict use of the quality
flags, as in Gaubert et al. (2016). In general, MOPITT data
have errors smaller than 10 % (Tang et al., 2020; Hedelius et
al., 2019), which is much lower than model errors. We eval-
uate our assimilation results with fully independent aircraft
observations.

4.4 Ensemble design

The ensemble of prior emissions is generated by apply-
ing a spatially and temporally correlated noise to the given
prior emission field, as in previous studies (Coman et al.,
2012; Gaubert et al., 2014, 2016, 2017; Barré et al., 2015,
2016). Emission perturbations are generated from a two-

dimensional Gaussian distribution with zero mean and uni-
tary variance (Evensen, 2003), with a fixed spatial correla-
tion length. Here we applied the same set of perturbations
for every time step, and thus the prior ensemble has a tempo-
ral correlation of 1. A different noise distribution is drawn for
biomass burning (BB) CO emissions than for anthropogenic
direct CO emissions, with a decorrelation length of 250 km
for BB and 500 km for direct anthropogenic CO. Thus, as op-
posed to previous studies, anthropogenic and BB CO sources
are completely uncorrelated in the prior ensemble. The same
noise is then applied to all the species emitted by the same
source, BB or anthropogenic, including NMVOCs, the non-
organic nitrogen species, SO2, and aerosols. This means the
added noise in emissions of NMVOCs and CO from the BB
or anthropogenic sectors will be completely correlated. We
generated another noise sample with a decorrelation length
of 500 km for soil emissions of NO.

The ensemble spread in the model physics variables is
important for CO, which is directly sensitive to errors in
horizontal and vertical winds (both boundary layer height
and convection), as well as surface exchange, and indirectly
through the impact of dynamics and physics on other chem-
icals. In particular, a spread in the MEGAN estimates of di-
rect and indirect CO emissions from biogenic sources will be
generated from the different atmospheric states passed to the
land model. We assigned a spatially and temporally uniform
noise drawn from a normal distribution with a standard devi-
ation of 0.1 to the CH4 emissions. More work will be done to
generate a realistic spread in CH4 emissions, but that is be-
yond the scope of this study. The ensemble spin-up starts on
1 April 2016 with perturbed emissions described above and
with a spread in nudging parameters to perturb the dynam-
ics. After a week, on 7 April 2016, the control run ensemble
is initialized from the spin-up; this simulation is not nudged
and this period is used to spin up the inflation parameters
for the assimilation of the weather observations only. The
MOPITT-DA run is initialized from the control run ensem-
ble on 15 April 2016.

4.5 Variable localization and parameter estimation

The multivariate error background error covariance allows
for an estimation of the error correlation between the ad-
justed model variables or state vector and observations. As
in previous studies we choose a strict “variable localization”
(e.g., Kang et al., 2011) because (1) it is easier to quan-
tify the impacts of the assimilation, such as the chemical
response (Gaubert et al., 2016), as well as the model and
observations errors (Gaubert et al., 2014), and (2) spurious
correlation can have a strong impact on the non-assimilated
species that have no constraints. This strict variable localiza-
tion means that the assimilation of MOPITT only corrects
the chemical state vector (i.e., CO), has no impact on the me-
teorological state vector (U , V , T , Q, Ps), and vice versa.
However, we made an exception and extended our chemical
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state vector by including CO emissions from BB and anthro-
pogenic sources separately and several NMVOCs. We added
C2H2, C2H4, C2H6, C3H8, benzene, toluene, and the xylene,
BIGENE, and BIGALK surrogate species to the state vector.
The NMVOCs with a strong anthropogenic and/or BB origin
that have a primary sink with OH should be strongly corre-
lated with CO (Miyazaki et al., 2012). The relationships be-
tween NMVOCs and CO leads to a correlation in their errors
so that the correlation existing in the ensemble will reflect
those true errors. In addition to the initial spread described
above, spatially and temporally varying adaptive inflation is
also applied to the optimized CO surface flux (SFCO) model
variable during the analysis procedure.

In CAM-Chem, a diurnal profile is not applied to the emis-
sions; instead, emissions are interpolated from the dates pro-
vided in the inventories, which is daily for BB and monthly
for anthropogenic sources. The relative increments obtained
from the analysis in the form of the surface flux model vari-
able (SFCO) is propagated back to the input file emissions
(E) following:

E
analysis
i = E

prior
i

(
1+w

1SFCOi
SFCOi

)
, (2)

where i is an ensemble member and w = ae−
t
τ is a weight to

represent the temporal representativeness and to limit the im-
pact of spurious correlation. At the analysis time (t = 0), the
weight will bew = a, with a = 0.8, i.e., 80 % of the initial in-
crements in Eq. (2). For the other time steps t , the exponential
decay characteristic time, τ , is set to 4 d in the case of BB and
4 months in the case of anthropogenic emissions. The im-
pact of the increments will therefore decrease exponentially
for the other time steps t from 0.8 to 0, which is imposed
(bounded) for 2τ (8 months or 8 d). This makes a strong cor-
rection for the current time and the closest time step. This al-
lows for smoothing the increments over time while hopefully
leading to a convergence through the sequential correction of
the emissions during the assimilation run.

4.6 Simulation overview

In Sect. 5, two simulations with the assimilation of meteo-
rological observations will be presented: the control run and
the MOPITT-DA. The difference between the two simula-
tions is the assimilation of MOPITT in the MOPITT-DA run.
In the MOPITT-DA assimilation run, the initial conditions
of CO and some NMVOCs, as well as CO emission inven-
tories from anthropogenic and biomass burning sources, are
optimized during the analysis step. The summary of the sim-
ulations presented in the following sections is also presented
in Table 2.

In Sect. 6, we compare our emission estimates with a state-
of-the-art chemical data assimilation and inversion system,
the Tropospheric Chemistry Reanalysis version 2 or TCR-
2 (Miyazaki et al., 2019b, 2020b). Miyazaki et al. (2020b)

assimilate a variety of satellite instruments using the lo-
cal ensemble transform Kalman filter (LETKF; Hunt et al.,
2007) with the MIROC-Chem model (Watanabe et al., 2011).
The setup is fully described and evaluated in Miyazaki et
al. (2020b). We regridded the anthropogenic prior and pos-
terior CO estimate from their 1.125◦× 1.125◦ mesh grid to
the CAM-Chem grid. In the TCR-2, the prior anthropogenic
emission is HTAP v2 for 2010 (Janssens-Maenhout et al.,
2015).

Additional sensitivity tests will be performed using deter-
ministic CAM-Chem simulations (Table 2) and presented in
Sect. 7. In this case, since no meteorological data assimila-
tion is performed, the dynamics from the prognostic vari-
ables U , V , and T need to be nudged towards the NASA
GMAO GEOS5.12 meteorological analysis in order to re-
produce the meteorological variability. The GEOS analysis
is first regridded on the CAM-Chem horizontal and vertical
mesh. The nudging is driven by two factors: the strength, a
normalized coefficient that ranges between 0 and 1; and the
frequency of the nudging, here configured to use 6-hourly
outputs from either the GEOS5 reanalysis or our own DART
CAM-Chem control run. Based on an ensemble of sensitiv-
ity tests (Supplement), we use the nudging setup that min-
imizes the meteorological errors for the KORUS-AQ ob-
servations. This best simulation is the g-post-0.72, here-
after denoted as CAM_Kv5 (Table 2), which will serve as
a reference for the additional sensitivity simulation experi-
ments. Aside from the control run and the MOPITT-DA, the
CAM-Chem simulations have the same nudging setup and
only differ by the CO anthropogenic emissions flux. In ad-
dition, the CAM_MOP-Bio is the same as the CAM_MOP
but with an overall increase in the MEGAN emission factor.
Note that the simulations denoted as CAM_HTAP (TCR-2
prior) and CAM_TCR-2 (TCR-2 posterior) are CAM-Chem
simulations with the respective anthropogenic CO emissions
from TCR-2. We also use the Copernicus Atmosphere Mon-
itoring Service (CAMS) global bottom-up emission inven-
tory (Granier et al., 2019; Elguindi et al., 2020). We use
the CAMS-GLOB-ANTv3.1, which has only minor changes
with regards to the most recent version (v4.2). The gridded
inventory is available at a spatial resolution of 0.1◦×0.1◦ and
at a monthly temporal resolution for the years 2000–2020. It
is built on the EDGARv4.3.2 annual emissions (Crippa et al.,
2018) and extrapolated to the most current years using lin-
ear trends fit to the years 2011–2014 from the CEDS global
inventory. We included artificial CO tracers or “CO tags”,
to track the anthropogenic contribution from different geo-
graphic area sources (e.g., Gaubert et al., 2016; Butler et al.,
2018).
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Table 2. Summary of the simulations. The nudging (GEOS) refers
to a CAM-Chem deterministic runs with specified dynamics using a
nudging to GEOS-FP analysis winds and temperatures (see the Sup-
plement). Aside from the DART simulations (first two rows), all the
simulations have the same initial conditions and the same nudging
and only change by their anthropogenic CO emissions inputs.

Simulation
name

Meteorology Emissions (prior)

Control run Assimilation
(DART)

Prior
(CEDS-KORUS-v5)

MOPITT-DA Assimilation
(DART)

Optimized
(CEDS-KORUS-v5)

CAM_Kv5 Nudging
(GEOS)

Prior
(CEDS-KORUS-v5)

CAM_HTAP Nudging
(GEOS)

Prior
(HTAP v2)

CAM_MOP Nudging
(GEOS)

Posterior
(CEDS-KORUS-v5)

CAM_MOP-Bio Nudging
(GEOS)

Posterior
(CEDS-KORUS-v5)+
MEGANx2 (see the
Supplement)

CAM_TCR-2 Nudging
(GEOS)

Posterior
(TCR-2, HTAP v2)

CAM_CAMS Nudging
(GEOS)

CAMS
(CAMS-GLOB-
ANTv3.1)

5 Assimilation results: evaluation of the posterior CO
during KORUS-AQ

We use the fully independent DC-8 Differential Absorption
CO Measurement (DACOM CO) to evaluate the MOPITT
assimilation. Figure 2 compares the averaged vertical profiles
for the four different mission weather regime phases (Peter-
son et al., 2019) and the average and standard deviation of all
the flights. Observed background CO in the upper free tropo-
sphere is between 100 and 125 ppbv and shows a variation of
around 10 % between the different phases. The control run
shows an average background between 70 and 100 ppbv for
the four phases and 80 ppbv for the full KORUS-AQ period,
while the MOPITT-DA varies between 80 and 110 ppbv for
the four phases with an average of 90 ppbv for the KORUS-
AQ period. The root mean square error (RMSE) in MOPITT-
DA is reduced by around 10 ppbv compared to the control run
for the free troposphere (700 to 300 hPa; Fig. 2).

For the layers closer to the surface, the temporal variations
are much stronger. During phase 3, observed CO is 44 % and
30 % higher than the campaign average at 850 and 950 hPa,
respectively. While this feature is much better reproduced af-
ter assimilation, absolute RMSE values remain large. Over-
all, the bias is greatly reduced for the MOPITT-DA in the
layers between 850 and 650 hPa. We note that the mean CO
is still lower than the average observations. The MOPITT-

Figure 2. Average CO profiles (left panels) and related RMSE (right
panels) for the control run and the MOPITT-DA. The mean (black
line) and standard deviation (shaded grey) of the DC-8 observations
are calculated for each 100 hPa bin. The first four rows are averaged
over the different weather regimes of the campaign (Peterson et al.,
2019). The last row displays the average over the whole campaign.

DA shows at the 950 and 850 hPa levels an underestimation
of around 30 ppbv, i.e., between 10 % and 20 % lower than
the observations. This is in the range of the expected perfor-
mance given the retrieval uncertainties (10 %) and the spatial
footprints of MOPITT pixels (22 km× 22 km)

5.1 VOCs state vector augmentation

Concentrations of some VOCs have been added to the state
vector and are therefore optimized according to the covari-
ance estimated by the ensemble when MOPITT observations
are assimilated. This setup will only provide meaningful cor-
rections if CO and VOC errors are highly correlated through
common atmospheric and emission processes and if the en-
semble samples those errors in the background error covari-
ance. In this case VOC analysis errors should be reduced
by assimilating MOPITT CO, even though VOCs are not di-
rectly observed.

The list of optimized VOCs is shown in Table 3, together
with their lifetime and the corresponding species from the
whole-air sampler (WAS) instrument used for evaluation. An
increase in concentration is found for all nine VOCs in the
MOPITT-DA simulation, either because of the state augmen-
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Table 3. VOCs added to the state vector, corresponding measur-
ing instrument, and lifetime (Simpson et al., 2020) used for val-
idation. For comparison with surrogate species, the sum of all the
corresponding VOC observations is used. WAS stands for whole-air
sampler.

Model Lifetime
variable Observations (days)

C2H6 ethane (WAS) 48
C2H2 ethyne (WAS) 15
C3H8 propane (WAS) 11
Benzene benzene (PTRMS) 9.5
BIGALK i-butane, n-butane, i-pentane, 3.5± 1.6

n-pentane, n-hexane, n-heptane,
n-octane, n-nonane, n-decane (WAS)

Toluene toluene (PTRMS) 2.1
C2H4 ethene (WAS) 1.5
Xylenes m-,p-xylene, o-xylene (WAS) 0.7± 0.2
BIGENE 1-butene, i-butene, trans-2-butene, 0.2± 0.1

cis-2-butene, 1-3-butadiene (WAS)

tation, and/or because of the reduction in OH due to CO ad-
justments. Even if the changes are small, this can lead to an
increase in errors for the vertical profiles compared to ob-
servations when the species is already overestimated in the
lower layer of the atmosphere. This is the case for C2H4
and BIGENE, the only two species that have substantial bio-
genic and fire sources, as well as for xylenes and toluene.
For all the other species, which are underestimated and are
mostly from anthropogenic sources, the assimilation leads to
an improvement compared to the observations, mostly by re-
ducing their biases. The best results are obtained for ethane
and to a lesser extent propane (Fig. 3). Despite the broad an-
thropogenic source, ethane and propane originate from sec-
tors that are quite different from CO. However, CO, ethane,
and propane have one thing in common, which is that their
only atmospheric chemical sink is through OH oxidation.
This suggests that a bias in OH leads to correlated errors be-
tween CO and alkanes that can be mitigated by including
these species in the state vector.

We define a metric of improvement based on the relative
change in RMSE that is positive when the RMSE is reduced.
Figure 3 shows a clear dependence of this metric on the at-
mospheric lifetime of the VOCs. All the modeled VOCs with
a lifetime shorter than 5 d show an increase in errors, while
all the VOCs with a lifetime greater than 10 d are improved,
with the largest improvement for ethane, which has a life-
time of 48 d. The relatively large spatial and temporal scales
of CO that arise due to its medium atmospheric lifetime sig-
nificantly limit the ability of CO assimilation to resolve the
high-frequency changes in those compounds with short life-
times. More importantly, this is also to be expected given the
limited sensitivity of the MOPITT observations to boundary
layer CO.

Figure 3. Atmospheric lifetime (from Simpson et al., 2020) in days
for the VOCs added to the state vector. Xylenes, BIGALK, and BI-
GENES are surrogate species, so an average of the lifetimes is cal-
culated. The relative error change is the opposite of the difference in
root mean square error relative to the control run (i.e., (control-run-
MOPITT-DA) / control run). Thus, a positive relative error change
means an improvement compared to the control run.

While satellite observation spatiotemporal resolution and
sampling might be improved in the future, NMVOCs with
a lifetime shorter than several days should not be included
in the state vector when assimilating CO. However, the con-
centrations of NMVOCs with strong anthropogenic or BB
sources and similar chemical characteristics to CO might be
significantly improved by the assimilation. We believe that
this could also be true for methane.

5.2 Chemical response from MOPITT-DA

This section presents a short summary of the impact of the
CO assimilation on the chemical state of the atmosphere and
the comparison with unobserved species. Figure 4 shows the
average vertical profiles for OH, HO2, NO, NO2, CH2O,
and O3. We use simulated OH and HO2 from the obser-
vationally constrained NASA LaRC box model (Schroeder
et al., 2020). The control run and the LaRC box models
agree on the mean OH spanning the first two binned lay-
ers at lower altitudes. Aloft, the control run overestimates
the LaRC box model simulations. The control run underesti-
mates HO2, which suggests that the excellent agreement on
OH in the boundary layer is likely caused by compensating
errors. That is, the increase in CO through the MOPITT as-
similation decreases the OH concentrations (Gaubert et al.,
2016). Here, we find better agreement of the model OH with
the observationally constrained LaRC box model simulation
at 750 hPa and above. This in turn increases HO2 and shows
a better match with the LaRC box model. This suggests that
a small part of the HO2 underestimation can be explained by
the CO underestimation. NO and NO2 are reasonably well
modeled for the surface layer but are underestimated above,
with a large underestimation at 850 hPa. An additional com-
parison with HNO3, J(O3), J(NO2), H2O2, and PAN is shown
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Figure 4. Average vertical profiles of OH (a) and HO2 (b) for the 1 s merge and the LaRC box model estimates (Schroeder et al., 2020).
Results are shown for DC-8 1 min merge observations for NO (c), NO2 (d), CH2O (e), and O3 measurements (f). The shaded area corresponds
to the standard deviation around the observed mean.

in Fig. S2. The underestimation of NOx at 850 hPa could be
due to the underestimation of NOx and PAN from upwind
source regions. Despite the update of the HO2 heterogeneous
uptake reaction and coefficient presented in Appendix B, the
CO increase leads to higher levels of H2O2, and the bias
is therefore higher in the MOPITT-DA than the control run
(Fig. S2). A lower value of the HO2 heterogeneous uptake
coefficient than the one used here (γ = 0.1) might produce
better results by reducing the HO2 sink (see Appendix B).
It suggests that errors in NOx and related chemistry drive
the underestimation of HO2 and of the sum of OH and HO2
(HOx). Overall, HOx is underestimated, and OH is fairly well
simulated. This suggests that the CO chemical sink alone

cannot explain the CO underestimation during the campaign.
Alternatively, CH2O is underestimated in both simulations,
suggesting an underprediction of the chemical production of
secondary CO. A similar effect to that described in Gaubert
et al. (2016) is shown, whereby an increase in CO through
the sequential assimilation leads to reduced OH and slows
down the VOC oxidation rate and formaldehyde formation,
although this is a small effect. In the lower part of the atmo-
sphere, the oxidation of additional CO leads to more effective
ozone production and no changes above, consistent with ob-
servations. While the errors in NOx are important, the low
CH2O points to a missing source, which could be due to an
underestimation of NMVOCs.
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6 Comparison of anthropogenic emission estimates

We show in Fig. 5 the emissions of the prior (CEDS-
KORUSv5) and its posterior estimated through the
DART/CAM-Chem inversion. It also shows the prior
(HTAP v2) from the TCR-2 and its posterior estimate, for
which CO emissions are also constrained by MOPITT. We
also show the CAMS emissions.

Compared to the prior (Fig. 5a), our posterior estimate
(Fig. 5d) shows a reduction around the Guizhou Province
in southwest China. Larger changes are observed for the
Shandong and Henan provinces in central China and over
the Yangtze River Delta (Fig. 5g). Increases in emissions
are also large in the NCP and the Liaoning Province. While
both inversions show a large increase over northern China
(Fig. 5g, h), the spatial patterns of the emissions are differ-
ent between the posterior and the TCR-2 for northern China.
The TCR-2 emission increments are located more in the NCP
and North Korea (Fig. 5f). Large differences can be identified
in central China, in particular over the YRD (Fig. 5h). The
Shanghai megacity emissions are higher in the DART/CAM-
Chem posterior (Fig. 5d) and the TCR-2 prior (Fig. 5b) than
in the TCR-2 posterior (Fig. 5e). A more consistent pattern
of larger emissions in the TCR-2 compared to our poste-
rior is found in southern China and the Sichuan Province
(Fig. 5f and h). Prior emissions of CO, biogenic and anthro-
pogenic VOCs, and NOx can all contribute to differences be-
tween the TCR-2 and our DART/CAM-Chem estimate. An-
other important aspect is the 500 km correlation length ini-
tial perturbation to generate the ensemble of anthropogenic
emissions, combined with a similar localization radius of
∼ 600 km, which explains the large-scale increments found
in the DART/CAM-Chem emissions increments (Fig. 5g).
The TCR-2 prior show more emissions over North Korea
than South Korea (Fig. 5b), and the opposite is true for the
DART/CAM-Chem prior (Fig. 6c). This is reflected in the
posterior for which the TCR-2 has more emissions in North
Korea than the DART/CAM-Chem posterior (Fig. 5f). Com-
pared to its prior, the DART/CAM-Chem posterior emissions
are increased by 25 % for South Korea and by 34 % over
the SMA. While the CAMS emissions are generally lower
(Fig. 5i), the South Korean emissions are higher than in all
the other inventories.

Our inversion suggests an underestimation of bottom-
up emission inventories for China. The agreement between
the posterior emissions for central China is better than for
the bottom-up inventory (Fig. 6). The difference between
CAMS (3.65 Tg CO per month) and the CEDS-KORUSv5
(5.7 Tg CO per month) is twice as high as the difference
between the DART/CAM-Chem posterior (7.6 Tg CO per
month) and TCR-2 (8.7 Tg CO per month). On average, the
increase in emissions due to assimilation is about 33 % for
central China and nearly doubled (80 %) in northern China,
from 2.7 to 4.9 Tg CO per month. TCR-2 suggests higher
emissions (5.7 Tg CO per month), while the CAMS estimate

is lower (1.8 Tg CO per month). More work should be ded-
icated to check whether the assumptions made on the prior
estimates impact the retrieved emissions. This includes im-
proving the regional distribution and scaling up the baseline
prior CO emissions, but also how much the model uncertain-
ties in the OH chemical sink impact the CO inversions (e.g.,
Müller et al., 2018). A comparison of the amount of residen-
tial coal-burning emissions in bottom-up inventories could
help in understanding the discrepancy and quantifying po-
tential offsets (Chen et al., 2017; M. Cheng et al., 2017; Zhi
et al., 2017; Benish et al., 2020).

For South Korea, a relatively smaller difference between
the posterior and the prior suggests an improved bottom-up
inventory. However, the smaller area of South Korea is much
less constrained by MOPITT, and the overall estimate seems
to be determined by the prior distribution. For instance, the
TCR-2 shows higher emissions over North Korea and the
Pyongyang area, while DART/CAM-Chem and CAMS sug-
gest higher emissions for the SMA. Therefore, the CAMS
total emissions that show a similar pattern (0.18 Tg CO per
month) are in good agreement with the DART/CAM-Chem
(0.16 Tg CO per month), while the TCR-2 has a total of
0.07 Tg CO per month. For Japan, where biomass burning
and low-tech coal combustion are rare, the total is nearly un-
changed in contrast to the other regions, and emissions are
increased from 0.38 to 0.41 Tg CO per month or 8 %.

7 Evaluation of the simulated vertical profiles against
ARIAs and KORUS-AQ

This section presents the evaluation of the simulated profiles
of CO, O3, OH, and HO2 with the observations from ARIAs
and KORUS-AQ.

7.1 Mean profile during ARIAs and KORUS-AQ

Figure 7 shows the average CO vertical profiles for the
ARIAs and KORUS-AQ campaigns. For the ARIAs field
campaign, we bin the profiles into 50 hPa bins. Overall, CO
observations show strong variability, with a large enhance-
ment over a background of around 170 ppbv found at 775 hPa
and above. Benish et al. (2020) show that the median of the
observed CO values in the lowest 500 m is around 400 ppbv.
Using additional enhancement ratios, the measurements in-
dicate low-efficiency fossil fuel combustion that could orig-
inate from residential coal-burning and gasoline vehicles as
well as crop residue burning such as straw from winter wheat.
The MOPITT-DA and TCR-2 overestimate the CO concen-
trations compared to the measurements for this surface layer,
although this overestimate is smaller by 60 % for TCR-2
and by 30 % for MOPITT-DA when a value higher than
20 ppbv SO2 (the approximate 95th percentile) is used to de-
fine plumes for exclusion. The CAM-Chem posterior simu-
lated CO concentrations that just use the smoothed posterior
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Figure 5. Emissions flux for May 2016 in megagrams of CO per month. Prior (a, CEDS-KORUS v5), TCR-2 prior (b, HTAP v2), and the
difference between the two priors (c, TCR-2 prior – prior). Panels (d–f) show the posterior (d, estimated by DART/CAM-Chem), the TCR-2
(e), and the difference between the two posteriors. Panels (g–i) show the emissions increments, the difference between the posterior and the
prior (g), and the difference between the TCR-2 and TCR-2 prior (h). The CAMS emissions are shown in panel (i).

Table 4. Comparison of CO (ppbv) measured aboard the DC-8 and model simulation for all altitudes. Statistical indicators are calculated for
phase 1 (seven flight days, 2952 observations), phase 2 (four flight days, 2029 observations), phase 3 (three flight days, 1243 observations),
phase 4 (five flight days, 2448 observations), and the whole campaign (20 flight days, 9099 observations).

CO (1) Bias (%) CO (2) Bias (%) CO (3) Bias (%) CO (4) Bias (%) CO (all) Bias (%)

Observation 173.1 198.3 246.8 211.2 203.6
Control run 114.5 −33.8 108.6 −45.2 138.7 −43.8 115.3 −45.4 118.6 −41.8
MOPITT-DA 146.5 −15.4 168.3 −15.1 230.6 −6.6 182.8 −13.5 178.5 −12.4
CAM_CAMS 108.1 −37.6 110.4 −44.3 112.2 −54.5 119 −43.6 112.8 −44.6
CAM_Kv5 112.3 −35.1 110.8 −44.1 124.7 −49.5 115.7 −45.2 115.9 −43.1
CAM_HTAP 118.7 −31.4 115.3 −41.8 137.3 −44.4 128.5 −39.2 124.6 −38.8
CAM_MOP 136 −21.4 131.8 −33.5 157.1 −36.3 139.5 −33.9 140.9 −30.8
CAM_TCR-2 138.4 −20 128.9 −35 174.4 −29.3 146.1 −30.8 145 −28.8
CAM_MOP-Bio 138.4 −20.1 137.2 −30.8 163 −34 151.8 −28.1 147.2 −27.7

emissions from the MOPITT-DA have a mean value closer
to the observations. While the two simulations do not have
exactly the same transport, the remaining underestimation
is likely to be due to the sequential data assimilation in the
MOPITT-DA runs that compensates for the remaining biases.
Interestingly, the HTAP v2 inventory that was for the year
2010 still provides good CO profiles (CAM_HTAP). The
CAM_Kv5, a nudged CAM-Chem simulation, and the con-
trol run underestimate the CO concentration, with slight dif-
ferences due to transport. The modeled profile with CAMS
emissions profiles is the lowest CO of all simulations. For
altitudes ranging between 900 and 600 hPa, the bias is low-
est using the TCR-2 emissions or with the MOPITT-DA be-
cause these emissions are more spatially representative of
regional pollution (Wang et al., 2018). This confirms that
the free-tropospheric background is too low in CAM_Kv5
and CAM_CAMS. The MOPITT-DA naturally shows the
lowest bias in CO concentrations in the free troposphere.

The 875 hPa (900 to 850 hPa) layer mean (and median) ob-
served ozone during ARIAs (Benish et al., 2020) is around
80 to 90 ppbv, and the mean peaks at 90 ppbv. For this layer,
higher O3 was found for simulations with higher CO. While
it suggests that reducing CO biases can improve O3, NO2
and NMVOCs such as aromatics seem to play an important
role in ozone formation in the region (Benish et al., 2020).
The mean O3 concentration is still underestimated by around
10 ppbv in the free troposphere.

Two groups appear when comparing to KORUS-AQ ob-
servations. The control run and CAM_Kv5, using CEDS-
KORUS v5 with two different model dynamics and
CAM_CAMS, simulate lower CO and show a severe low
bias of more than 100 ppbv at the surface. The second group
includes the CAM-Chem simulations using posterior emis-
sion estimates. Those simulations are quite close together,
with an average for all altitude layers of CO of 141 and
145 ppbv and with a bias of 31 % and 29 %, respectively (Ta-
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Figure 6. Anthropogenic CO emissions for May 2016 for central
China (91◦ E, 29◦ N to 124◦ E, 38◦ N), North China (91◦ E, 38◦ N
to 130◦ E, 49◦ N), South Korea (125◦ E, 33.5◦ N to 129◦ E, 38◦ N),
and Japan (130◦ E, 30◦ N to 146◦ E, 44◦ N).

ble 4). This is to be compared with their priors that have an
average CO of 116 and 125 ppbv, which implies an under-
estimation of 43 % and 39 %, respectively. Correcting only
the bias in anthropogenic emissions is not as efficient as the
joint optimization of anthropogenic emissions and sequential
optimization of initial conditions through data assimilation
(MOPITT-DA). It suggests that other sources of error such
as transport and chemistry can be mitigated by state assim-
ilation. The MOPITT-DA has an average CO of 179 ppbv,
resulting in a 12 % underestimation on average (Table 4),
which is well within the range in measurement and repre-
sentativeness errors. Aside from CAM_CAMS, the modeled
free-tropospheric O3 shows no particular bias. The enhance-
ment of observed O3 closer to the surface is underestimated
in all simulations. The optimized emissions lead to an in-
crease of a few parts per billion in O3, bringing those simula-
tions closer to the observations. In summary, using top-down
estimates of CO emissions clearly improves the CO and O3
vertical profiles against independent observations over China
and Korea.

7.2 Weather-induced dynamical change in CO during
KORUS-AQ

Figure 8 shows the CO anomalies during KORUS-AQ for
the observations and the simulations. The CO anomalies are
largest in phase 3, with an enhancement of almost 100 ppb
at 850 hPa. This transport phase, defined and described in
Peterson et al. (2019), was characterized by high levels of
ozone (> 60 ppbv) and PM25 (> 50 µg m3) because of effi-
cient transport of low-level pollution (Huang et al., 2018;
Miyazaki et al., 2019a; Choi et al., 2019). The model reason-
ably reproduced the variability of the different phases, albeit

with insufficient magnitude. The desired magnitude is only
achieved when including data assimilation. Updating the an-
thropogenic emissions from the bottom-up to the top-down
inventories improved the representation of the CO anoma-
lies. This suggests that weather patterns and direct anthro-
pogenic emissions explain some of the CO variability during
the campaign. However, since only the MOPITT-DA simu-
lation reproduces the anomalies well, it suggests that chem-
istry and transport are important too. Large-scale subsidence
and reduced wind speeds during the anticyclone of phase 2
were marked by the lowest CO anomalies and are also better
reproduced with the updated emissions. Over South Korea,
running CAM-Chem with the CAMS emissions shows the
highest anthropogenic CO from South Korean sources at the
surface for the four phases and is likely to produce more real-
istic simulations since CO is constantly underestimated. This
cannot be seen for the total CO since most of the CO is not
from South Korean direct anthropogenic sources. The pro-
file tags of the contributions from central China and northern
China are approximately doubled with the optimized emis-
sions, consistent with Tang et al. (2019). As shown in the pre-
vious section, the CAM_TCR-2 and the DART/CAM-Chem
posteriors have the highest emissions from China and there-
fore the largest contribution of the CO tags from both north-
ern and central China.

We will now focus on two case studies, phase 2 and phase
3, for which the highest ozone was observed at the surface in
South Korea during KORUS-AQ (Peterson et al., 2019).

7.3 Phase 2 case study: the anticyclonic phase

A large-scale anticyclone occurred from 17 to 22 May 2016
with increased surface temperatures, reduced wind speed,
and drier conditions, all of which enhance ozone production
(Peterson et al., 2019). The conditions were also favorable
to an increase in biogenic emissions. As shown in the previ-
ous sections, this episode was characterized by negative CO
anomalies that were best captured by the MOPITT-DA sim-
ulations. This anomaly is reflected through lower OH and
higher O3 between 800 and 400 hPa (Fig. 9). This indicates
rather clean air masses, probably with a larger stratospheric
contribution. This episode is driven by the overall weather
pattern with a clear enhancement of HOx and O3 towards the
surface. In this case, changes in anthropogenic CO only play
a minor role, and O3 is still modeled better with a reduc-
tion of the bias by 1 ppbv between the posterior and the prior
(Table 5). The increase in biogenic emissions leads to an im-
provement in O3 by further reducing the bias at the surface
(Fig. 9). Over the whole profile, the bias is reduced by 3 ppbv
(4 ppbv against the prior) for the CAM_MOP-Bio compared
to the CAM_MOP, with a reduction in RMSE as well (Ta-
ble 5).
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Figure 7. Average CO vertical profiles for the ARIAs campaign (a, b) and KORUS-AQ (c, d). Observations were filtered out when SO2 was
higher than 20 ppbv for ARIAs and benzene higher than 1 ppbv for KORUS-AQ. The black line shows the observation mean, and the shaded
area is the observation standard deviation. Only mean CO or O3 are shown for the model simulations.

Table 5. Comparison of O3 measured aboard the DC-8 and model simulation for all altitudes. Statistical indicators are calculated for phase
2 (four flight days, 1910 observations), phase 3 (three flight days 1111 observations), and all of KORUS-AQ.

O3 (phase 2) Bias RMSE O3 (phase 3) Bias RMSE O3 (all) Bias RMSE

Observation 87.7 91.5 82.1
Control run 77.2 −10.6 19.6 81.8 −9.7 20.4 75.1 −7.0 16.8
MOPITT-DA 79.7 −8.0 18.1 83.8 −7.7 19.5 76.9 −5.2 15.9
CAM_CAMS 74.4 −13.3 20.7 76.1 −15.4 24.2 73.6 −8.5 18.8
CAM_Kv5 78.2 −9.6 18.5 80.2 −11.3 21.5 76.5 −5.6 17.4
CAM_HTAP 78.5 −9.2 18.4 80.7 −10.8 21.2 76.9 −5.2 17.3
CAM_MOP 79.1 −8.6 18.2 81.6 −9.9 20.8 77.6 −4.5 17.2
CAM_TCR-2 79.2 −8.6 18.1 82.2 −9.2 20.5 77.8 −4.4 17.1
CAM_MOP-Bio 82.3 −5.5 15.9 84.2 −7.3 20.2 80.5 −1.6 16.5

7.4 Phase 3 case study: low-level transport and haze
development

Phase 3 was characterized by the largest observed CO and
O3 positive anomalies. In this case, there is a clear relation-
ship between the CO bias and the O3, OH, and HO2 vertical
profiles (Fig. 9). The OH is overestimated because of a lack

of CO, other VOCs, and errors in the vertical profile of NOx .
Increasing CO in the CAM_MOP reduces OH and increases
HO2 and O3. The overall bias (Table 5) in ozone is reduced
from 11.3 ppbv to 9.9 ppbv with the change in CO and low-
ered further to 7.3 ppbv with the additional increase in bio-
genic emissions (CAM_MOP-Bio). The relative impacts of
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Figure 8. Average CO anomalies for the four different phases of KORUS-AQ (first column). The anomaly is defined by subtracting the
respective average vertical profile (see Fig. 2). Absolute vertical profiles of the CO tags are shown from South Korea (second column),
central China (third column), and northern China (fourth column). Each row corresponds to a different phase.

biogenics are clear in the surface layer for OH, HO2, and
O3. Overall, HO2 and O3 are underestimated as a result of
CO underestimation. The MOPITT assimilation provides the
best results for OH throughout the profile as well as a lower
RMSE and a similar bias as the CAM_MOP-Bio (Table 5).
As suggested by the Chinese origin of the pollution for higher
levels, it is likely that additional anthropogenic NMVOCs are
also missing and contribute to the ozone formation that is still
underestimated.

8 Conclusions

Anthropogenic CO emissions are an important contributor to
poor summer air quality in Asia and to forward modeling un-
certainties. Here we evaluate top-down estimates of the CO
emissions in East Asia with aircraft observations from two
extensive field campaigns. There are multiple lines of evi-
dence that the bottom-up anthropogenic emissions are too
low in winter and spring, leading to a large underestima-
tion of CO during the KORUS-AQ campaign in May and
June 2016. We also highlight in this work the fact that chem-
ical production and loss via OH reaction from emissions
of anthropogenic and biogenic VOCs confound the attribu-
tion of this bias in current model simulations. Combined ini-

tial conditions and emission optimization remains the best
method to overcome these modeling issues. The major find-
ings of this investigation are the following.

1. The comparison of OH modeling and observations con-
firms that assimilating CO improves the OH chemistry
by correcting the OH /HO2 partitioning. The interac-
tive and moderately comprehensive chemistry with re-
solved weather from reanalysis datasets represents the
variations in OH well. These results provide an addi-
tional line of evidence that assimilating CO improves
the representation of OH in global chemical transport
models. This has implications for studying the CH4–
CO–OH coupled reactions and the impact of chem-
istry and interactive chemistry for allowing feedbacks.
It suggests that even if global mean OH is buffered
on the global scale, local changes in OH can be im-
portant and can be quantified by taking advantage of
field campaigns. This will create ways to improve and
provide additional constraints on CH4 inversions by ei-
ther improving the sink or by better characterizing an-
thropogenic sources through CO assimilations. A better
quantification of the spatiotemporal variability of these
compounds will improve the physical representation of
Earth system processes and feedbacks and will be bene-
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Figure 9. Average LaRC box model OH and HO2 as well as measured O3 for phase 2 (a, c, e) and phase 3 (b, d, f) of KORUS-AQ.

ficial for both air quality and climate change mitigation
scenarios.

2. The setup of the CO assimilation that corrects the initial
conditions and emissions provides the best results for
CO. While the emission update improves the forecast
closer to the source, the assimilation allows for better
reproduction of the vertical profiles and the background
and eventually compensates for model errors.

3. The spread of emission estimates from state-of-the-art
inventories, three bottom-up and two top-down, is sig-
nificant. For example, the emissions in central China
show a range from 3.65 to 8.87 Tg CO per month. Inven-
tories with the highest emissions fluxes show improved
vertical profiles of CO.

4. Running the forward model with updated emissions of
anthropogenic CO increases the O3 formation, reduces
OH, and increases HO2. This improves the compari-
son with O3, OH, and HO2 observations. The compar-
ison with observations suggests that the overall mod-
eled photochemistry was improved with updated CO
emissions. In this case, there is also a better represen-
tation of severe pollution episodes with large O3 values.
Often overlooked, it clearly shows that running chem-
istry transport models with biased CO and VOC emis-
sions results in poorly modeled ozone and impacts most
of the chemical state of the atmosphere. The sensitivi-
ties may vary for different chemical and physical atmo-
spheric environments. In this case, underestimating CO
in VOC-limited chemical regimes explains the underes-

https://doi.org/10.5194/acp-20-14617-2020 Atmos. Chem. Phys., 20, 14617–14647, 2020



14634 B. Gaubert et al.: Correcting model biases of CO in East Asia

timation of ozone in the boundary layer and the lower
free troposphere.

5. Biogenic emissions appear to play an important role in
ozone formation over South Korea, in particular when
conditions are favorable (sunny and warm). The role is
weaker over China, at least in May before maximum
biogenic emission rates. A combined assimilation of
CO and CH2O observations is likely to greatly improve
ozone forecasting through estimates of boundary and
initial condition estimates of VOCs.

On top of CO data assimilation, improved emissions through
state augmentation can help improve the next generation
of Korean (e.g., Lee et al., 2020) or global (Barré et al.,
2019) air quality analysis and forecasting systems. Further
improvements can be achieved by simultaneously assimilat-
ing CH2O retrievals (e.g., Souri et al., 2020) and CO re-
trievals. Improving the aerosol distribution can help correct
the HO2 uptake and therefore OH, CO, and O3 by assimi-
lating satellite aerosol optical depth measurements, in partic-
ular for this region with high aerosol loadings (e.g., Ha et
al., 2020). Using CrIS–TROPOMI joint retrievals (Fu et al.,
2016), the improved vertical sensitivity may potentially be
used to further constrain secondary CO formed through bio-
genic oxidation. In this case, secondary CO is correlated with
ozone formation. This is also true for other geographical ar-
eas, such as over the United States in summer (Y. Cheng et
al., 2017, 2018). On average, there is a lower combustion ef-
ficiency in China than in Korea, with the ratio of CO to CO2
changing accordingly as shown by the DC-8 measurements
during KORUS-AQ (Halliday et al., 2019) and indicated by
model simulations (Tang et al., 2018). Tracking CO2 and CO
from fossil fuel emissions could be combined to further con-
strain fossil fuel emission fluxes.

Many studies have focused on the long-term CO emission
trends now well characterized (Zheng et al., 2019). For the
sake of forward modeling (see, e.g., Huang et al., 2018), it is
important to focus on improving the absolute emission totals
and their spatiotemporal distribution. While bottom-up in-
ventories are critical, the next step is a comparison of inverse
modeling estimates in combination with aircraft observations
(e.g., Gaubert et al., 2019) to assess transport, chemistry, and
deposition error. Multi-model estimates of the emissions will
provide improved error bars on the CO budget and hopefully
reduced uncertainties from chemistry and meteorology (e.g.,
Müller et al., 2018; Miyazaki et al., 2020a).

Atmos. Chem. Phys., 20, 14617–14647, 2020 https://doi.org/10.5194/acp-20-14617-2020



B. Gaubert et al.: Correcting model biases of CO in East Asia 14635

Appendix A: KORUS-AQ DC-8 instrumentation

CO and CH4 were both measured using the fast-response
(1 Hz), high-precision (0.1 % for CH4, 1 % for CO), and
high-accuracy (2 %) NASA Langley Differential Absorption
CO Measurement or DACOM (Sachse et al., 1987). Based on
the differential absorption technique, CO and CH4 were mea-
sured using an infrared tunable diode laser. The instrument
has been used in many field campaigns and has been useful
to evaluate profiles retrieved from satellite remote sensing of
CO (Warner et al., 2010; Tang et al., 2020). Formaldehyde
was measured using the Compact Atmospheric Multispecies
Spectrometer (CAMS), also at 1 Hz (Richter et al., 2015).
NO, NO2, and O3 were measured by the NCAR chemi-
luminescence instrument (Ridley and Grahek, 1990; Wein-
heimer et al., 1993). Nitric acid (HNO3), hydrogen peroxide
(H2O2), and methyl hydroperoxide (CH3OOH) were mea-
sured using the California Institute of Technology Chemical
Ionization Mass Spectrometer (CIT-CIMS) (Crounse et al.,
2006). Among the 82 speciated VOCs from discrete whole-
air sampling (WAS) followed by multicolumn gas chro-
matography (Simpson et al., 2020), we used ethyne (C2H2),
ethane (C2H6), ethene (C2H4), and propane (C3H8). All the
larger alkanes (i-butane, n-butane, i-pentane, n-pentane, n-
hexane, n-heptane, n-octane, n-nonane, n-decane), alkenes
(1-butene, i-butene, trans-3-butene and 1-3-butadiene), and
xylenes (m-,p-xylene, o-xylene) were summed (Table 3)
for comparison with the BIGALK, BIGENE, and xylenes,
respectively, of the T1 surrogate species (Emmons et al.,
2020). Methanol (CH3OH), acetaldehyde (CH3CHO), ace-
tone (CH3COCH3), benzene (C6H6), and toluene (C7H8)
were measured with the proton-transfer-reaction time-of-
flight mass spectrometer (PTR-ToF-MS) at 10 Hz frequency
(Müller et al., 2014). We also evaluate some meteorolog-
ical parameters (Chan et al., 1998), such as temperature,
wind speed, and water vapor moist volumetric mixing ra-
tio measured by the NASA open-path diode laser hygrom-
eter (Diskin et al., 2002; Podolske et al., 2003), with a 5 %
uncertainty. J values were measured using the CAFS instru-
ment (Charged-coupled device Actinic Flux Spectroradiome-
ter; Shetter and Müller, 1999; Petropavlovskikh et al., 2007).

Appendix B: CAM-Chem updates

B1 CH4 emissions from the Global Carbon Project
CH4

Radiatively active species, such as CH4, are prescribed in
CAM-Chem using a latitudinal monthly surface field derived
from observations in the past and projections for the future,
defined in the CMIP6 protocol (Meinshausen et al., 2017). In
order to include the feedbacks in the CH4–CO–OH chemi-
cal mechanism, we choose to apply CH4 emissions instead
of the prescribed field. The scope of the paper is not to study

the methane budget; the objectives are to see how much CO
is produced from CH4 during the campaign. The long-term
goal is to get sensitivities to changes according to CO emis-
sion updates in order to analyze the feedbacks on CH4 when
CO is changed. We used emissions from some of the inver-
sions of a recent compilation of the CH4 budget from top-
down estimates (Saunois et al., 2020). As a first step, we
used the mean of the 11 inversions (Table B1) that assimilate
CH4 retrievals from the JAXA Greenhouse Gases Observing
SATellite (GOSAT; Kuze et al., 2009).

B2 The HO2 uptake by aerosol particles

The TS1 chemistry includes an HO2 uptake by aerosol par-
ticles following the recommendation of Jaeglé et al. (2000)
and Jacob et al. (2000), which forms H2O2 with a reactive
uptake coefficient γ of 0.2, as follows:

HO2+ aerosols→ 0.5×H2O2 with γ = 0.2. (B1)

Based on Observations from the NASA Arctic Research of
the Composition of the Troposphere from Aircraft and Satel-
lites (ARCTAS) and other field campaigns, Mao et al. (2010,
2013) suggested a catalytic mechanism with transition metal
ions (Cu and Fe) that rapidly converts HO2 to H2O instead
of H2O2:

HO2+ aerosols→ H2O with γ = 0.2. (B2)

Using Eq. (B2) and γ = 1 leads to a large loss of HOx ,
which in turn increases the CH4 and CO lifetime and thus re-
duces the CO bias during the high-latitude winter (Mao et al.,
2013). Christian et al. (2017) simulated a range of possible
values of γ , evaluated the results against ARCTAS data, and
found that lower γ , closer to zero, gave a more realistic distri-
bution of HOx . Kanaya et al. (2009) studied ozone formation
over Mount Tai, located in central East China, and looked at
the possible influence of the heterogeneous loss of gaseous
HO2 radicals. They found that introducing the loss reduces
HO2 levels and increases ozone, with a more pronounced ef-
fect in the upper part of the boundary layer where the role of
OH+NO2+M reaction does not play a significant role in
the radical termination reaction, while the number density of
aerosol particles is still important. Li et al. (2018) found that
the HO2 uptake was the largest HOx sink in the upper bound-
ary layer in northern China. They suggested that the reduc-
tion in HO2 uptake caused by the decrease in aerosols was re-
sponsible for the increase in O3 in the region. Thus, the initial
comparison of CAM-Chem using Eq. (B1) showed a large
overestimation of H2O2. In a previous study using Eq. (B1),
the increase in CO following data assimilation increased hy-
drogen peroxide (H2O2) levels (Gaubert et al., 2016). There-
fore, it is expected that hydrogen peroxide (H2O2) would
be severely overestimated if Eq. (B1) is used. Miyazaki et
al. (2019a) assimilated several satellite retrievals of chem-
ical composition during KORUS-AQ, including MOPITT,
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Table B1. List of the 11 methane inversions from the global methane budget (Saunois et al., 2020), as indicated by the column showing the
number of inversions. All the details are presented in the references.

Number of
Institution and model Observation used inversions References

FMI, CarbonTracker
Europe, CH4

GOSAT NIES L2 v2.72 1 Tsuruta et al. (2017)

LSCE and CEA,
LMDz-PYVAR

GOSAT Leicester V7.2 2 Yin et al. (2015)

LSCE and CEA,
LMDz-PYVAR

GOSAT Leicester V7.2 4 Yin et al. (2020)

NIES, NIES-TMFLEXPART
(NTFVAR)

GOSAT NIES L2 v2.72 1 Maksyutov et al. (2020);
Wang et al. (2019)

TNO and VU, TM5-CAMS GOSAT ESA/CCI v2.3.88
(combined with surface observations)

1 Segers (2020 report); Bergamaschi et
al. (2010, 2013); Pandey et al. (2016)

EC-JRC, TM5-4Dvar GOSAT OCPR v7.2
(combined with surface observations)

2 Bergamaschi et al. (2013, 2018)

Table B2. Description of the sensitivity test performed with CAM-
Chem before any assimilation run.

Simulation name HO2 uptake (γ ) Surface CH4

CAM-Chem-Ref Eq. (2) (γ = 0.2) Prescribed
CAM-Chem-H2O Eq. (3) (γ = 0.2) Prescribed
GCP-Ref Eq. (2) (γ = 0.2) Emissions
GCP-H2O (γ = 0.2) Eq. (3) (γ = 0.2) Emissions
GCP-H2O (γ = 0.1) Eq. (3) (γ = 0.1) Emissions

and found a strong overestimation of H2O2 using Eq. (B1) in
the chemical scheme of the MIROC-Chem model. Thus, the
reaction in CAM-Chem has been updated to Eq. (B2) with
γ = 0.1 prior to any data assimilation run.

B3 Results on HO2 uptake and methane emissions

This section presents the results of the model update be-
fore the assimilation runs are conducted. Five CAM-Chem
simulations were performed (Table B2), and CAM-Chem-
Ref corresponds to the reference with prescribed CH4 and
Eq. (B2) for the HO2 uptake. CAM-H2O is performed with
the update to Eq. (3) for the HO2 uptake, and GCP-Ref is
performed with the CH4 emissions instead of the CH4 pre-
scribed field. GCP-H2O contains the update of CH4 emis-
sions and of the HO2 uptake and has been run with γ = 0.2
and γ = 0.1.

Figure B1 shows the average profiles for H2O2 and CH4.
There is a large bias in H2O2 for the reference simulation
(CAM-Chem-Ref) that is particularly large in the surface
layer. The observed H2O2 at the surface is lower in the morn-
ing due to inhibited photochemical production and nighttime
deposition (Schroeder et al., 2020). Large model errors could
then be due to uncertainties in the boundary layer height and
wet deposition. However, this points to an underestimation

of H2O2 dry deposition, a common feature found due to an
overestimation of surface resistance (Ganzeveld et al., 2006;
Nguyen et al., 2015). The H2O2 daytime deposition veloci-
ties calculated at the location of the Taehwa Research Forest
ranged between 0.4 and 1.3 cm s−1, which suggests an un-
derestimation compared to the observed velocities of around
5 cm s−1 reported in the literature (Hall and Claiborn, 1997;
Hall et al., 1999; Valverde-Canossa et al., 2005; Nguyen et
al., 2015). A simulation with a 5-fold increase in the H2O2
deposition velocity over land only partially reduces the H2O2
bias. Further work needs to be done to better understand the
drivers of the H2O2 biases, which is beyond the scope of this
study.

Interestingly, having CH4 emissions (GCP-Ref) while
keeping the original reaction (Eq. 2) gives a slightly better
H2O2, suggesting that using optimized emissions instead of
a prescribed concentration field has an effect on the oxidant
distribution. The three simulations with the updated chem-
istry outperform the references with biases almost halved.
This is particularly true for the free troposphere. The mod-
eled H2O2 profile seems rather insensitive to the choice of the
γ value. Since the simulations with γ = 0.1 perform slightly
better, all following simulations will be done with the up-
dated reaction and γ = 0.1. This is consistent with a recently
published study that diagnosed a median γ value of 0.1 over
the NCP region (Song et al., 2020).

Using emissions instead of fixed boundary conditions im-
proves the simulated CH4 near the surface, but with a lower
tropospheric background (Fig. B1). The comparison with
CH4 observations indicates a general underestimation. At
this point, it is difficult to determine why it is underestimated.

A first reason could be a CH4 sink in the model that is
too strong compared to the sink considered in the inversions
that derived the GCP emissions. However, the prescribed
CH4 is not resolved in longitude, while the difference for a
given latitude can be up to 300 ppb when using emissions
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Figure B1. Average H2O2 profiles (a) and CH4 profiles (b) for KORUS-AQ. The mean (black line) and standard deviation (shaded grey) of
the DC-8 observations are calculated for each 100 hPa bin, and only the mean is shown for model simulations.

(see Fig. S1). Emissions also have uncertainties and could be
underestimated, or they may have just been estimated with
lower OH than the one CAM-Chem simulates for this period.
Saunois et al. (2020) showed that GOSAT-based inversions
have lower emissions than surface-based inversions for the
northern midlatitudes. It is likely that the errors observed dur-
ing KORUS-AQ are a combination of both of those factors,
as well as potential transport errors. Since the CH4 profile is
overall better reproduced with the GCP emissions, we have
used the ensemble mean of the 11 GCP optimized emissions
for the simulations presented in the main paper.
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Code and data availability. CESM2.1.0 is a publicly re-
leased version of the Community Earth System Model that
is freely available online (at https://www.cesm.ucar.edu/,
last access: 2 April 2020). The Data Assimilation Re-
search Testbed is open-source software (version Man-
hattan; Boulder, Colorado: UCAR/NCAR/CISL/DAReS,
https://doi.org/10.5065/D6WQ0202); code and documentation
are available at https://dart.ucar.edu/ (last access: 22 November
2020).

The Korea–United States Air Quality Field
Study (KORUS-AQ) dataset is available at
https://doi.org/10.5067/Suborbital/KORUSAQ/DATA01.

The ARIAs observational dataset is available at https://www-air.
larc.nasa.gov/cgi-bin/ArcView/korusaq?OTHER=1#top (last ac-
cess: 24 November 2020).

MOPITT data are available at https://www2.acom.ucar.edu/
mopitt (last access: 24 November 2020, UCAR, 2020).

The Tropospheric Chemistry Reanalysis version 2 is available for
download at https://tes.jpl.nasa.gov/chemical-reanalysis/products/
monthly-mean/ (last access: 24 November 2020, JPL, 2020).

The Copernicus Atmosphere Monitoring Service (CAMS) global
bottom-up emission inventory is available on the Emissions of at-
mospheric Compounds and Compilation of Ancillary Data (EC-
CAD) website (https://eccad3.sedoo.fr, last access: 24 Novem-
ber 2020, AERIS, 2020).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/acp-20-14617-2020-supplement.
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